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Single molecule force spectroscopy �SMFS� is extensively used to characterize the mechanical unfolding
behavior of individual protein domains under applied force by pulling chimeric polyproteins consisting of
identical tandem repeats. Constant velocity unfolding SMFS data can be employed to reconstruct the protein
unfolding energy landscape and kinetics. The methods applied so far require the specification of a single
stretching force increase function, either theoretically derived or experimentally inferred, which must then be
assumed to accurately describe the entirety of the experimental data. The very existence of a suitable optimal
force model, even in the context of a single experimental data set, is still questioned. Herein, we propose a
maximum likelihood �ML� framework for the estimation of protein kinetic parameters which can accommodate
all the established theoretical force increase models. Our framework does not presuppose the existence of a
single force characteristic function. Rather, it can be used with a heterogeneous set of functions, each describ-
ing the protein behavior in the stretching time range leading to one rupture event. We propose a simple way of
constructing such a set of functions via piecewise linear approximation of the SMFS force vs time data and we
prove the suitability of the approach both with synthetic data and experimentally. Additionally, when the
spontaneous unfolding rate is the only unknown parameter, we find a correction factor that eliminates the bias
of the ML estimator while also reducing its variance. Finally, we investigate which of several time-constrained
experiment designs leads to better estimators.
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I. INTRODUCTION

The kinetics of protein unfolding under mechanical stress
represents a very important topic in the field of biophysics as
can be seen in the large number of reviews surveying the
problem �1–13�. The most widely employed model for study-
ing mechanical protein unfolding sees bond rupture as a de-
cay of a metastable state with reaction kinetics given by

d�

dt
= − k„f�t�…��t� , �1�

where ��t� is the survival probability up to time t, f�t� stands
for the force at time t, and k(f�t�) is the dissociation rate �14�.
The dependence of the dissociation rate on force was given
in �15� the analytical formula

k�f� = k0e�f , �2�

where �=x� / �KbT� with x� standing for the position of the
transition state along the mechanical reaction coordinate and
k0 being the spontaneous dissociation rate.

The two parameters k0 and � are usually extracted by
either of two approaches. The first one, sometimes called the
“standard method” �SM� �see, e.g., �16,17��, involves Gauss-
ian fits of the rupture force distributions for various loading
rates and a linear regression between the most probable rup-
ture forces and the logarithm of the loading rate, without
taking into account the joint effects of multiple modules that
unfold sequentially in the context of polyproteins. The sec-

ond approach is based on Monte Carlo �MC� simulations
�see, e.g., �1,18–23��, and in this case the mentioned joint
effects are properly accounted for. However, both traditional
methods have intrinsic shortcomings: they either throw away
useful information by summarizing the data into statistics
that are not sufficient or geometrically fitting as closely as
possible quantities that are not of prime interest, such as
linear dependencies or rupture force distributions, rather than
focusing directly on finding the most probable kinetic param-
eters �24�. To overcome these shortcomings a maximum like-
lihood �ML� approach has been previously proposed �24,25�.

We have further developed the ML approach in order to
address the following problems:

�1� The probability to observe an unfolding event is a
contextual feature of homomeric polyproteins.

�2� In real experiments a unique force-time, and likewise
force-displacement, characteristic does not exist �see, e.g.,
�25��. When either the cantilever tip or the surface is not
functionalized, which is often the case, this is in fact pre-
dicted by the theoretical models since they depend on micro-
scopic parameters that vary based on the length of the sub-
range under mechanical stress and even from spot to spot
depending on the local properties of the soft protein layer
�26,27�.

�3� Choosing one among the many existing theoretical
force models for idealized polymeric chains, as reviewed,
e.g., in �24,28–31�, with various corrections of the interpola-
tion formulas �32,33�, is not trivial, and neither is deriving an
empirical force model from the experimental data itself �25�.

We tackle the first problem by taking into account the
number of not-yet-unfolded modules when computing the
survival probability in Eq. �3�. We solve the second problem
by allowing in Eq. �4� a different force-time function to de-
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scribe the stretching time range leading to each unfolding
event as long as they are considered known �i.e., not intro-
ducing nuisance parameters into the likelihood function�. Fi-
nally we address the third problem by constructing the force-
time functions in an automated, fully objective way as
increasing, continuous piecewise linear approximations to
the AFM-recorded data points using Eq. �A4�.

We show that � can be estimated just by maximizing the
univariate function in Eq. �7�, after which k0 immediately
comes out from Eq. �6�. Since the statistical estimation pro-
cedure would not be complete without a way to compute the
uncertainty of the estimated values �34�, with Eq. �9� we
show how to extract a Bayesian credible region, i.e., a fixed
two-dimensional area that contains with a given probability
the random point �k0 ,�� �see, e.g., �35��. The approach is
computationally feasible even for complex theoretical mod-
els such as wormlike chain �WLC� �36,37� that require nu-
meric integration for the evaluation of the likelihood func-
tion. In fact WLC has never been used before in the context
of ML estimation of kinetic parameters, but it can be easily
applied with our framework by solving Eq. �A3�.

It should be emphasized that it is common practice to fix
� to a known value and estimate only k0 in situations that are
believed not to alter the position of the transition state: re-
placing water by deuterium oxide �38�, certain protein muta-
tions �22,39,40�, and stretching proteins under the effect of
chemical denaturants �41�. For this particular case we pro-
pose the unbiased and more efficient estimator given by Eq.
�8�.

II. THEORY

Next we are going to present the analytical form of the
likelihood function; we will explain how it can be maxi-
mized and how to compute a credible region for the two
parameters.

A. Likelihood function

When a monomeric protein is stretched starting with time
ts, from Eq. �1� and imposing that ��ts�=1, we obtain

��t� = exp�− �
ts

t

k„f�u�…du�, t � ts.

For a multimeric construct made up of identical tandem
repeats behaving independently, let us consider an unfolding
event after which, chronologically, there are m−1�0 more
unfolding events in the single molecule force spectroscopy
�SMFS� curve. The probability that all m modules survive
becomes

�m�t� = exp�− m�
ts

t

k„f�u�…du�, t � ts. �3�

Assuming that f�t� is continuous and increasing with
f�ts�=ys, we can change the integration domain to force:

�m�y� = exp�− m�
ys

y

k�z��f−1���z�dz�, y � ys.

The probability density rm�y� to observe a rupture event at
force y�ys is

rm�y� = −
d

dy
��y�

= mk�y��f−1���y�exp�− m�
ys

y

k�z��f−1���z�dz� .

Notation 1. Let n be the total number of unfolding peaks
in the whole data set, and for each unfolding event
1� i�n we denote by tsi and ysi the time point and force at
which we consider the stretching to start, by ti� tsi and
yi�ysi the rupture time instant and force of rupture, and by
mi the number of modules that will unfold after i in the same
curve, plus 1. The force-time function for peak i, from tsi to
ti, is described by f i.

Since the unfolding events are independent of each other,
the joint probability density function associated to the rup-
ture forces y� = �y1 . . .yn� is

L�y� ;k� = exp�− �
i=1

n

mi�
ysi

yi

k�z��f i
−1���z�dz�	

i=1

n

mik�yi�

��f i
−1���yi� . �4�

At this point we introduce � and k0 explicitly into the
joint probability density function by using Eq. �2�:

L�y� ;k0,�� = exp�− k0�
i=1

n

mi�
ysi

yi

e�z�f i
−1���z�dz�

�k0
n	

i=1

n

mie
�yi�f i

−1���yi� . �5�

Note that f i can be any continuous increasing function.
Appendix A contains more details about the computation of
the derivative of the inverse force-time function when the
WLC model is assumed �Eq. �A3�� and explicit formulas for
the likelihood function when applied to the linear force-
displacement characteristic f�t�=	vt �Eq. �A1�� or the piece-
wise linear force-time approximation �Eq. �A4��.

Briefly, the piecewise linear force-time approximation is a
linear interpolation of a longest increasing subsequence �see,
e.g., �42,43�� of the force values reported by the AFM during
stretching, which is computed by removing the minimal
number of data points such that the remaining ones show
increasing force with time, and breaking ties by calling for
increased time resolution toward the rupture event �see Ap-
pendix A�. This approach eliminates most of the noise and it
has the nice theoretical property that if applied to a set of
forces that is already increasing, it becomes a simple linear
interpolation.

B. Point estimation

Regarding L�y� ;k0 ,�� as a function of k0, the conditional
maximum likelihood estimate of k0 is the argument for which
the function achieves the global maximum on �0,
� and can
be computed as
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k0̂��� =
n

�
i=1

n

mi
ysi

yi e�z�f i
−1���z�dz

. �6�

Substituting in Eq. �5� we obtain the profile likelihood for
�, which needs to be maximized numerically to obtain the
estimator �̂:

Lp��� = k0̂���nexp���
i=1

n

yi�e−n	
i=1

n

mi�f i
−1���yi� . �7�

While ML estimators are known to have very good
asymptotic properties when used with i.i.d. �independent and
identically distributed� random variables �see, e.g., �44,45��,
our rupture forces yi are not identically distributed because
each unfolding event i is assigned its own ysi, mi, and f i. As
a result a more complex theory, such as perhaps that devel-
oped in �46�, would be needed to study the asymptotic be-
havior of our ML estimators, but a rigorous treatment of the
problem would exceed the scope of the present paper.

However, we do show in Appendix B that when � is fixed
and known, and under the conditions of proposition 1, which
can be shown to hold for the WLC interpolation formula in
Eq. �A2� and for any force-time function that increases lin-

early after an arbitrary time point, the estimator k0̂��� is bi-
ased. For this situation we propose the following unbiased
estimator of k0:

k0
˜��� = �n − 1�k0̂���/n, n � 2. �8�

Since �2�k0
˜����= ��n−1� /n�2�2�k0̂����, where �2 stands for

variance, the unbiased estimator is also more efficient.

C. Bayesian credible region

We show here that the particular shape of our likelihood
function makes it feasible to numerically compute a
�rectangular� credible region for �k0 ,�� containing the
respective point estimates.

A key operation in the numerical computation of credible
regions is the ability to efficiently integrate the likelihood
function over �potentially infinite� rectangular regions. For
this purpose we make the following observation:

�
a

b

xne−cxdx =
1

cn+1�
ca

cb

yne−ydy

=
n!

cn+1 �P�n + 1,bc� − P�n + 1,ac��

for any 0�a�b�
, c�0, and integer n�0, where P is the
incomplete gamma function defined as

P�h,x� =
1

�h��0

x

th−1e−tdt, h � 0.

The integral of the likelihood function on a rectangular
region then simplifies as

L�k0s,�s�
�k0e,�e� = �

k0s

k0e �
�s

�e

L�y� ;k0,��d�dk0

= �
�s

�e P„n + 1,k0ec��,y��… − P„n + 1,k0sc��,y��…
c��,y��n+1

�exp���
i=1

n

yi�d�n ! 	
i=1

n

mi�f i
−1���yi� , �9�

with

c��,y�� = �
i=1

n

mi�
ysi

yi

e�z�f i
−1���z�dz .

A �1− p� credible region of �k0 ,�� can then be found as a
rectangular area �k0s ,k0e�� ��0s ,�0e� that includes the point

estimates �k0̂ , �̂� such that L�k0s,�s�
�k0e,�e� /L�0,0�

�
,
�=1− p. Alternatively
k0 and � can be restricted to a finite, more physically feasible
region, and it is indeed common practice to do so with
Monte Carlo methods which sample only a particular domain
of interest �see, e.g., �22��.

III. VALIDATION

We present below three applications: a synthetic experi-
ment for the situation when � is fixed and known, another
synthetic experiment to check the suitability of the linear
force-displacement model and the piecewise linear approxi-
mation with WLC-conforming data under a few time-
constrained design strategies, and finally a real SMFS experi-
ment with a well characterized protein.

A. Unbiased estimator k0
˜(�) is indeed a better estimator than
the biased one

In order to confirm the theoretical prediction that k0
˜��� is

not only unbiased but also a better estimator than k0̂��� in
terms of showing smaller root-mean-square error �RMSE�,
we simulated pulling a multimeric construct made up of 20
identical modules whose length, spontaneous unfolding rate,
and position of the transition state were chosen to match
those previously reported for a real protein, namely, the B1
immunoglobulin-binding domain of protein G from strepto-
coccus �GB1� �47�.

Therefore, we used k0=0.039 s−1, x�=0.17 nm,
T=301.15 K, and for each n in 2,…,101 we generated
10 000 data sets of n unfolding events each following the
linear force vs displacement characteristic with a cantilever
spring constant of 0.07 N/m. The n events were generated
giving roughly equal shares to each of the velocities
2−i 2180 nm /s, i=0, . . . ,5. The starting force of pulling was
randomly chosen within a range compatible with what is
commonly observed experimentally, and the number of not-
yet-unfolded modules was varied between 1 and 20.

Under these conditions the observed mean of k0
˜��� was

always very close to the theoretical expected value of 0.039,
even for n=2, while the observed RMSE went down from
about 0.0744 s−1 for n=2 to about 0.0039 s−1 for n=101
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�data not shown�. The biased estimator instead showed large
bias for small values of n and higher RMSE all throughout
�see Fig. 1� thus confirming the theoretical prediction that the

unbiased estimator k0
˜��� is better than the biased estimator

k0̂���.

B. Synthetic WLC data are well approximated by the
piecewise linear function

We performed a more comprehensive simulation in order
to compare the ability to recover the kinetic parameters with
the various approaches discussed so far, when the data are
generated by using the WLC model. We focused specifically
on the importance of the intermediate data points from the
start of the stretching process up to the rupture event, which
are roughly approximated by the piecewise linear force-time
function, but not taken into account by the widespread linear
force-displacement model.

A second goal of this simulation was to investigate the
efficiency of a few different experiment designs in terms of
spreading a fixed amount of experimental time across differ-
ent pulling velocities and checking which strategy leads to
estimates with better performance.

The kinetic parameters and the cantilever spring constant
were kept the same as in the previous synthetic data experi-
ment, while the protein pick-up rate was set to 100%. Each
trial simulated about 107.87 s of experimental time with a
surface delay of 200 ms, an approach speed of 4360 nm/s,
four unfolding modules in each curve, a piezo range of 500
nm, and 2048 sample points per curve, all of which are very
reasonable values commonly used in real experiments. Six
retraction speeds have been used, namely, 125, 249, 545,
1090, 2180, and 4360 nm/s, and six experiment design strat-
egies were covered: lowest speed only �LSO� with 25 curves
at the lowest velocity, highest and lowest equal number
�HLEN� with 22 curves at the lowest speed and 23 at the
highest one, highest and lowest equal time �HLET� with 12
curves at the lowest speed and 126 at the highest one, all
speeds equal number �ASEN� with 11, 11, 11, 12, 12, and 12
curves, respectively, in increasing velocity order, all speeds
equal time �ASET� with 4, 7, 15, 24, 34, and 42 curves,
respectively, in increasing velocity order, and finally highest

speed only �HSO� with 251 curves at the highest velocity.
The number of trials was 1000 and all the data were gener-
ated using the WLC interpolation formula of Eq. �A2� with a
persistence length of 0.35 nm.

The data were analyzed using our ML framework with the
following force function types: linear force-displacement
�L�, piecewise linear force �PL�, WLC, and finally Gaussian
piecewise linear force �GPL�. For the last-mentioned one we
kept the rupture force unchanged, to allow for a reasonably
fair comparison to the other approaches, but added noise
with a standard deviation of 20 pN �22� to all the other data
points in order to check how well the piecewise linear force
approximation is able to tackle noise by selecting only the
longest increasing subsequence of force values or indeed
how much the remaining inaccuracies matter.

Additionally, we also analyzed the HLEN, HLET, ASEN,
and ASET data sets using the SM as reviewed in �16� and the
MC method analyzing the speed dependence of the unfold-
ing force as reviewed in �18,20–23�. Briefly, the standard
method consists in fitting a linear dependence between the
most probable rupture force and the logarithm of the loading
rate 	v. The two kinetic parameters are then computed from
the slope and intercept of the fitting line implicitly adopting
the assumption that the force behavior during stretching can
be satisfactorily approximated by the linear force-
displacement characteristic. The Monte Carlo method instead
consists in the simulation of thousands of synthetic curves on
a two-dimensional grid of k0 and x� parameters and then
selecting the combination of parameters that best match the
experimental mean unfolding force dependence on velocity.

The SM approach produced the worst results where appli-
cable, next followed by the L approach, the results of both
being displayed in Figs. 2 and 3. The observed bias was
around one to two orders of magnitude for k0 and not too
small for x� either, therefore, raising a signal flag about the
dangers of applying the wrong theoretical force model, in
this case using the linear force-displacement characteristic
when the underlying data have been generated using the
WLC model. The assumed general applicability of the linear
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FIG. 1. Ratio of ��k0
˜���� over ��k0̂���� as a function of the

number of unfolding events, where � stands for root-mean-square
error.
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FIG. 2. Estimation of k0 using the linear force-displacement
model. Data were generated using the strategies LSO, HLEN,
HLET, ASEN, ASET, and HSO, from left to right. Estimation was
performed using maximum likelihood �L� and the standard method
�SM�. The dashed horizontal line indicates the actual k0 value used
for data generation. The crosses mark the mean and the error bars
extend one standard deviation in both directions.
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force-displacement characteristic has also been previously
disproved with experimental data in �25�.

Figures 4 and 5 contain the results for the other methods.
Except for a little bias at the lowest speed, the ML-based
WLC approach worked very well, as expected since the data
were generated with the same model, and no noise was
added.

Surprisingly the performance of the PL approach was al-
most indistinguishable from that of the WLC-assuming ap-
proach. This is quite significant since the PL approach does
not take into account the fact that the data were generated
with WLC suggesting that the results might be just as good
with data conforming to any other theoretical model. It
means that the time resolution in our synthetic data, which is
typical of AFM instrumentation, is high enough so that the
error performed by making a piecewise linear approximation
to the WLC curve is negligible.

GPL, which is identical to PL except that it receives noisy
input, also gave good results, although the estimates were
noticeably more biased than the WLC or PL ones throughout
all design strategies, while the variance was slightly larger.

The bias in the GPL k0 estimate ranged from 2.3% to 3.5%,
while for x� from 1.1% to 2.0%, which in the presence of
noise can be considered as very small.

Excluding the unsatisfactory L approach, for each of the
other three ML-based approaches �GPL, PL, and WLC� the
HLET experiment design strategy showed the smallest
RMSE for both k0 and � when compared to the other five
design strategies �LSO, HLEN, ASEN, ASET, and HSO�
covered in our simulation. That suggests that a very efficient
experiment design consists in equally splitting the experi-
mental time across two velocities, one very high and one
very low.

Since the Monte Carlo method implies the same WLC
model also used to generate the synthetic data of the simu-
lated time-constrained experiments, the Monte Carlo method
performed quite well �Figs. 6 and 7�. The best experiment
design strategy for MC turned out to be HLEN instead of
HLET, followed closely by the latter one, for both k0 and x�.
Comparing the results of the best design strategy of each
approach, the Monte Carlo method achieved an RMSE about
50% higher for k0 and 128% higher for x� compared to our
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ML-based WLC and PL approaches, and about 40% higher
for k0 and 74% higher for x� compared to GPL, that is, the
piecewise linear method with noisy input. We would like to
stress once more that while the MC approach in our simula-
tion had access to the exact force model �WLC� with the
exact parameters �contour length and persistence length�
used for data generation, for GPL noise was present in the
data and no information whatsoever about the underlying
model was available. The difference in statistical
performance is only expected to increase in real experimental
settings where the force response is generated by the
�linker-�protein-cantilever system rather than a unique,
known theoretical model.

We can draw four conclusions from this synthetic data
experiment. First, the general applicability of the linear
force-displacement characteristic is disproved, whether ap-
plied through either the standard method or the maximum
likelihood framework. Second, the piecewise linear approxi-
mation works well with WLC-conforming data. Third, for a
fixed amount of experimental time, using only the highest
feasible velocity to get as many unfolding events as possible
is not the best experiment design strategy; instead it is better
to allot half of the experimental time to a much lower veloc-
ity. Fourth, the ML approach, including the model-
independent piecewise linear approximation, is better than
the Monte Carlo method even when a unique force model
exists and is known, as was the case in our simulation, and
the advantage remains solid when noise is added only to the
input of the piecewise linear approach.

C. GB1 kinetic parameters were correctly recovered from an
SMFS experiment with polyprotein (GB1)8

We further tested our ML approach with experimental
data we obtained by pulling a multimeric construct
consisting of eight GB1 modules �27,47,48�. For the
experiment, a drop of the �GB1�8-containing solution
�20 �L, �0.1 g /L� was deposited on a flame cleaned glass
coverslip for about 30 min. The velocity-clamp mechanical

unfolding SMFS experiment was performed using Picoforce
AFM with Nanoscope IIIa controller �Digital Instruments,
Plainview, NY, USA� with a V-shaped silicon nitride canti-
lever �NP; Digital Instruments� whose spring constant was
calibrated by the thermal noise method �49�. The buffer used
was Tris/HCl �10 mM, pH 7.5�.

We used the open source project Hooke �50� with locally
made modifications to extract the relevant information from
the AFM-recorded files, after which we applied an automated
filtering step mostly based on the protocol specified in �21�.
A total of 250 unfolding events passed the filtering stage,
about a quarter of them at a retraction velocity of 125 nm/s,
a quarter at 249 nm/s, and half at 2180 nm/s.

Making the WLC assumption we obtained the point esti-
mates k0�0.0475 s−1, x��0.1661 nm, and a 70%-credible
region of �0.0415,0.0653� s−1� �0.1583,0.1687� nm, in
very good agreement with the values reported in the
literature of 0.039 s−1 and 0.17 nm that had been
previously extracted from a larger data set consisting of 1826
unfolding events via WLC-assuming Monte Carlo simula-
tions �47�. Using the piecewise linear force-time approach
we obtained instead the point estimates k0�0.0622 s−1,
x��0.1627 nm, and a 70%-credible region of
�0.0466,0.0777� s−1� �0.1576,0.1677� nm. Each of the
two credible regions contains the point estimates obtained
with both approaches. Figure 8 shows the piecewise linear
approximation and the WLC fits for a �GB1�8 curve with
eight unfolding events from our experimental data set.

Using the WLC-based Monte Carlo method we obtained
similar values of k0�0.05 s−1 and x��0.16 nm. Instead,
using the standard method for the estimation task we ob-
tained k0�8.1440 s−1, which is two orders of magnitude
larger than expected, and also a smaller distance to the tran-
sition state x��0.1302 nm.

We conclude that when WLC describes well the experi-
mental data, as is the case with GB1 �47�, the estimates ob-
tained via the piecewise linear approximation and those ex-
tracted by making the WLC assumption are compatible
within statistical uncertainty, while the k0 estimate computed
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FIG. 7. Estimation of x� using GPL, PL, WLC, and MC. The
GPL, PL, and WLC data are the same as in Fig. 5 and are repro-
duced here for easy visual comparison. Data were generated using
the strategies HLEN, HLET, ASEN, and ASET, from left to right.
The dashed horizontal line indicates the actual x� value used for
data generation. The crosses mark the mean and the error bars ex-
tend one standard deviation in both directions.
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FIG. 8. �Color online� Experimental curve obtained by pulling
the �GB1�8 construct at v=2180 nm /s. The light blue �light gray�
lines meeting in the origin represent WLC fits. The points interpo-
lated by the thin red �medium gray� lines represent AFM force
readings. The thick black lines are piecewise linear approximations
of the longest increasing subsequences of force values. The detach-
ment peak and nonspecific interactions at the start are not shown.
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via the standard method can be off by a couple of orders of
magnitude.

IV. SUMMARY

We have set forth an ML framework for the analysis of
SMFS experiments with homomeric polyproteins, where the
protein kinetic parameters of the monomeric module are of
interest. For the restricted case when only the spontaneous
dissociation rate is unknown, we found an unbiased estima-
tor that is also more efficient than the plain ML estimator.

To account for the heterogeneity of force behaviors seen
in SMFS experiments we propose a piecewise linear ap-
proximation to the forces recorded by the AFM during
stretching and showed via extensive simulation that the ap-
proach is able to correctly recover both kinetic parameters.
That obviates the need to assume a predetermined force in-
crease model which, as our tests show, can result in large
estimation errors if the wrong one is chosen, thus, disproving
the widespread practice of assuming the linear force-
displacement characteristic.

Our framework does, however, allow one to specify a
predetermined force model, and we validated this use case in
the context of the WLC model with both synthetic and ex-
perimental data. The latter was obtained by pulling a
polyprotein made up of identical tandem repeats of a protein
domain that had been previously characterized via WLC-
assuming Monte Carlo simulations. By imposing the same
WLC model, from our data set we recovered almost the same
kinetic parameters under the ML framework and also by ap-
plying the Monte Carlo method. Since WLC describes well
the behavior of �GB1�8 �47�, this confirms the correctness of
both our Monte Carlo implementation and the ML frame-
work we propose. In order to compare the statistical proper-
ties of our approach against the Monte Carlo method we
turned to synthetic data experiments which show that the
WLC-assuming ML estimators are better than the WLC-
assuming Monte Carlo estimators in terms of RMSE.

Without imposing a theoretical force model instead we
obtained from the experimental data a slightly larger sponta-
neous unfolding rate, but still within the 70%-credible region
of the WLC-based estimator. The compatibility, but with
some difference, between the two sets of estimates can be at
least partly attributed to the ability of the WLC model
�strictly speaking, the approximation formula of Eq. �A2�� to
describe well, but not perfectly, the behavior of the studied
protein. This constitutes an approach for testing the applica-
bility of a theoretical force model to any protein when geo-
metric curve fits by themselves do not provide a definitive
answer.

To do a comparison in terms of statistical performance
with the Monte Carlo method we turned again to synthetic
data experiments which proved that our ML approach, even
when used without any information about the underlying
force increase model, and with noise added to the data, per-
forms better than the Monte Carlo method configured with
the correct force increase model that was used for data gen-
eration, with the correct parameters so that no fitting is nec-
essary. This is a clear proof of the superiority of the ML

estimation: it requires less information as input while at the
same time leading to better estimators even under clearly
disadvantageous conditions.

Finally we approached the problem of long experimental
times in two ways. First, by using ML estimation one is
likely to need fewer rupture events for the estimation task
compared to traditional approaches that do not benefit from
the likelihood principle that guarantees that no information is
lost. Second, our synthetic data experiments suggest that
rather than using the highest feasible pulling velocity to get
as many unfolding events as possible, it is more efficient to
also use one much lower retraction velocity and to allot to
the two velocities equal shares of the experimental time.

V. CONCLUSIONS

We conclude with a short review of the advantages our
proposed method brings over existing ones:

�1� It is particularly well suited for the analysis of experi-
ments where a master curve cannot be easily identified such
as those involving ligand-receptor complexes �25� �see Ap-
pendix A 1�.

�2� It is the only method for which an unbiased estimator
of the dissociation rate has been provided when the distance
to the transition state is known, thus, making it particularly
attractive for the analysis of protein unfolding under the ef-
fect of certain chemical denaturants �41�, protein mutations
�22,39,40�, and different solvents of equal molecule size �38�
�see Eq. �8��.

�3� In all the tested settings it leads to better estimators of
the kinetic parameters in terms of RMSE when compared to
existing methods even under disadvantageous conditions
�see Sec. III B�.

�4� It comes with a clear recommendation about how to
design experiments based on the well accepted statistical cri-
terion of reducing the RMSE of the obtained estimators �see
Sec. III B�.

�5� As a simple numerical maximization of a univariate
function �see Eq. �7��, point estimation is very fast in prac-
tice, in our experience orders of magnitude faster than the
more established Monte Carlo method which instead requires
extensive data generation on a two-dimensional grid of pa-
rameters.

Because of the generality of the last three mentioned ad-
vantages we recommend our approach as the method of
choice in the analysis of all velocity-clamp experiments with
polymers made up of one or more identical domains.
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APPENDIX A: APPLICATION TO SOME FORCE-TIME
FUNCTIONS

We show next how the likelihood function can be com-
puted with two force models and the piecewise linear ap-
proximation.
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1. Linear force-displacement characteristic

Under the linear force vs displacement characteristic f�t�
=	vt the likelihood function in Eq. �5� becomes

L�y� ;k0,�� = exp�−
k0

�
�
i=1

n
mi

	ivi
�e�yi − e�ysi��k0

n	
i=1

n
mi

	ivi
e�yi.

�A1�

2. Wormlike chain

The wormlike chain describes the force dependence on
the distance over contour length ratio, and we adopt the well-
known interpolation formula with less than 10% error pro-
posed in �37�:

f�t� =
KbT

4p
�1 − x�t�/Lc�−2 + 4x�t�/Lc − 1� , �A2�

where x�t�=vt− f�t� /	 is the distance at time t �51�. By sub-
stitution we get the cubic equation

− 4az3 + ��12a/b + 4�y + 9a�z2

− �y2�12a/b + 8�/b + y�18a/b + 8� + 6a�z

+ y3�4a/b + 4�/b2 + y2�9a/b + 8�/b + y�6a/b + 4� = 0,

�A3�

where a=KbT / p, b=	Lc, and z= �f−1��y�v /Lc.
It is possible to show that there is exactly one root in the

interval of interest �y /b ,1+y /b�, so �f−1��y� can be obtained
without ambiguity. Many ways to solve the cubic polynomial
equation exist including closed-form solutions �52�. Then
�f−1���y� can be computed by implicit differentiation, thus,
making possible the numerical computation of the likelihood
function using Eq. �5�.

3. Piecewise linear force

The problem of finding the longest increasing subse-
quence of a sequence is classical in computer science and for
this purpose we use an O�n log n� algorithm as described,
e.g., in �42�. Now let us consider one unfolding event with
the longest increasing subsequence of forces y1 , . . . ,yp at in-
creasing times t1 , . . . , tp, with yp being the rupture force. The
piecewise linear force-time function is then assembled as

f�t� = �yj + �t − tj��yj+1 − yj�/�tj+1 − tj� , if tj � t � tj+1, 1 � j � p − 1

yp−1 + �t − tp−1��yp − yp−1�/�tp − tp−1� , if t � tp−1.
�

Assuming that unfolding event i has longest increasing
subsequence of force values �ti1 ,yi1� , �ti2 ,yi2� . . . �tipi

,yipi
�

with the connection to the notation throughout the rest of the
paper being that �ti1 ,yi1�= �tsi ,ysi� and �tipi

,yipi
�= �ti ,yi�, the

likelihood function can be written as

L�y� ;k0,�� = exp�−
k0

�
�
i=1

n

mi �
j=1

pi−1
tij+1 − tij

yij+1 − yij
�e�yij+1 − e�yij��

�k0
n	

i=1

n

mi

tpi
− tpi−1

ypi
− ypi−1

e�yipi. �A4�

APPENDIX B: EXPECTATION OF k0̂(�) FOR �
FIXED

Proposition 1. For ��0 fixed and n�2, if


ysi


 e�z�f i
−1���z�dz=
 for all 1� i�n, then E�k0̂����

=nk0 / �n−1�.

To prove the above result we start from the definition

E�k0̂���� = �
y1�ys1. . .yn�ysn

k0̂���L�y� ;k0,��dy1 . . . dyn.

Using Eqs. �5� and �6�, and making the changes of variables

xi = k0mi�
ysi

yi

e�z�f i
−1���z�dz, 1 � i � n

we obtain

E�k0̂���� = nk0�
x1�0. . .xn�0

exp�− �
i=1

n

xi�
�
i=1

n

xi

dx1 . . . dxn,

where the multiple integral can be computed as 1 / �n−1�,
thus, obtaining the desired result.
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